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Although many papers deal with the permutation flowshop scheduling problem

with or without setups, according to our knowledge, little has been published tackling

multi-objective optimization in presence of sequence dependent setup times. Hence, in

this work we cope with this problem considering two pairs of well known independent

objectives, the Cmax−TWT (Makespan-Total Weighted Tardiness ) and Cmax−TFT

(Makespan-Total Flowtime). An effective algorithm, RIPG (Restarted Iterated Pareto

Greedy), has been developed to face this complex scheduling setting. The RIPG is a

Pareto evolution of the IG (Iterated Greedy) algorithm, a rather new metaheuristic

approach which has shown state-of-the-art performance in single objective optimiza-

tion for the permutation flowshop problem with [1] and without setups [2]. In essence,

it consists of a greedy strategy iteratively applied over an archive of nondominated

solutions. The greedy procedure used is an evolution of the well known NEH heuristic

[3] and makes use of the Pareto relationship to generate a whole set of nondominated

solutions. The rationale of the proposed method is very simple. Roughly, it is possible

to divide it into five phases. The first phase is the Initialization, where an initial set of

good solutions is generated using a heuristic approach. The remaining four phases are

iteratively repeated and constitute the bulk of the algorithm. They are: the Selection

phase, where one or more solutions, belonging to the current archive, are selected for

the following steps. A modified version of the Crowding Distance Assignment proce-

dure, originally presented in [4], has been developed in order to carry out the selection

process. The Pareto greedy improvement phase is then applied over the selected solu-

tion and it returns a set of solutions which do not dominate each other. During this

step, the current solution is disrupted (Destruction), removing some jobs from the se-

quence, and a greedy procedure Construction) is applied. The construction procedure

reinserts the eliminated jobs into partial sequences similarly to the insertion procedure

of the NEH heuristic, returning, a hopefully improved, nondominated solution set. This

set is then added to the current Pareto archive and dominated elements are discarded.

A Local search phase is hence applied on a selected solution to enrich the process and

to improve the current Pareto set in terms of spread and diversity. Lastly, a Restart
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procedure is implemented to prevent the algorithm from getting stuck in local optima.

In this work we compare our algorithm against the highest performing approaches (es-

pecially those proposed for the multi-objective flowshop problem). In [5] a large number

of papers dealing with multi-objective flowshop algorithms have been reviewed and the

best performing ones have been also implemented. Starting from this point, we first re-

duced the number of methods by means of a preliminary test on a small set of instances

and, depending on the results obtained, we selected the ten best algorithms. Notice

that such methods also show the best performance for multi-objective permutation

flowshop without setups. During this preliminary phase we noted that the algorithm

proposed by [6] (MOSA Varad) achieved worse results with respect to the others, be-

cause it is not able to fully exploit the available CPU time. Therefore, we decided to

implement an improved version of this method (which we refer to as MOSA Varad M).

In [7] a promising algorithm (MOIGS) has been recently proposed and we decided to

implement and evaluate.

In all the experiments that we present in this work, we make use of two different instance

sets (SDST50 and SDST125), presented in [2]. Each set contains 110 instances with

several combinations of the number of jobs n and number of machines m. The n×m

combinations are: {20, 50, 100}×{5, 10, 20}, 200×{10, 20}. Setup times are selected to

be respectively 50% and 125% of the processing times (pij). As regards the performance

measures, the comparison of two different Pareto approximations is not straightforward.

However, recent studies point out how the so-called “Pareto-compliant” measures (see

[8,9]) seem to be the most appropriate. Among these, we selected the hypervolume

(IH) and the multiplicative unary epsilon (I1
ε ) indicators which represent the state-of-

the-art as far as quality indicators are concerned (for more details on the application

of these measures to multi-objective flowshop problem see [5]).

The stopping criterion for all algorithms is given by a time limit that is not fixed but

depends on the size of the considered instance. The algorithms are stopped after a CPU

running time of n ·m/2 · t milliseconds, where t is an input parameter. In this way we

can assign more time to larger instances that are, obviously, more time consuming. Ev-

ery algorithm is run 10 different independent times (replicates) on each instance with

two different stopping criteria: t = 150 and t = 200 milliseconds. A total of 114,400

data points are collected (13 tested algorithms × 220 instances × 10 replicates per

instance × 2 different stopping time criteria × 2 pairs of objectives). Actually, each

data point is an approximated Pareto front containing a set of vectors with the two

objective values.

Table 1 contains average results for (SDST125) instance set and (Cmax − TWT ) as

objectives. Although each depicted value is attained by means of a very large number

of samples, it is still necessary to carry out a comprehensive statistical experiment to

assess if the observed differences in the average values are statistically significant. A

total of 32 different experiments are carried out. We did parametric ANOVA analyses

as well as non-parametric Friedman rank-based tests on both quality indicators and

for the two different stopping criteria. The utility of using both parametric and non-

parametric tests consists in improving the soundness of our conclusions. We carried out

16 (8 for each couple of objectives) multi-factor ANOVAs where the type of instance

is a controlled factor. The algorithm is another controlled factor with 13 levels. The

response variable on each experiment is either the hypervolume or the epsilon indica-

tor. Lastly, there is one set of experiments for each stopping time. All the tests are

carried out with confidence level α = 0.05. Considering that each experiment contains

14,300 data points, the three main hypotheses of ANOVA: normality, homoscedasticity



and independence of the residuals are easily satisfied. To compare results, a second set

of 16 experiments are performed. In this case, non-parametric Friedman rank-based

tests are carried out. Since there are 13 algorithms and 10 different replicates, the re-

sults for each instance are ranked between 1 and 130. All these tests proved that IPG

widely outperforms all other algorithms for both hypervolume (IH) and epsilon indica-

tors (I1
ε ). As a consequence, IPG can be considered the state-of-art for this important

scheduling problem.

SDST125 Time 150 200

# Method IH I1
ε Method IH I1

ε

1 RIPG 1.307 1.077 RIPG 1.322 1.067
2 MOIGS 1.194 1.171 MOIGS 1.207 1.160
3 MOGALS Arroyo 0.980 1.271 MOGALS Arroyo 0.993 1.260
4 MOSA Varad M 0.939 1.348 MOSA Varad M 0.949 1.344
5 MOTS 0.930 1.318 MOTS 0.938 1.312
6 PESAII 0.923 1.267 PESAII 0.936 1.262
7 PESA 0.922 1.264 PESA 0.933 1.259
8 MOSA Varad 0.853 1.404 MOSA Varad 0.847 1.408
9 PGA ALS 0.840 1.354 PGA ALS 0.842 1.352
10 PILS 0.776 1.410 PILS 0.81 1.385
11 MOGA Murata 0.737 1.389 MOGA Murata 0.747 1.384
12 ε−NSGAII 0.679 1.419 ε−NSGAII 0.688 1.416
13 CMOGA 0.669 1.422 CMOGA 0.686 1.413

Table 1 Results for Cmax − TWT criteria and SDST125 instance set.
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